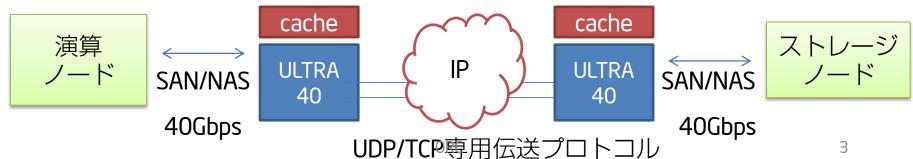
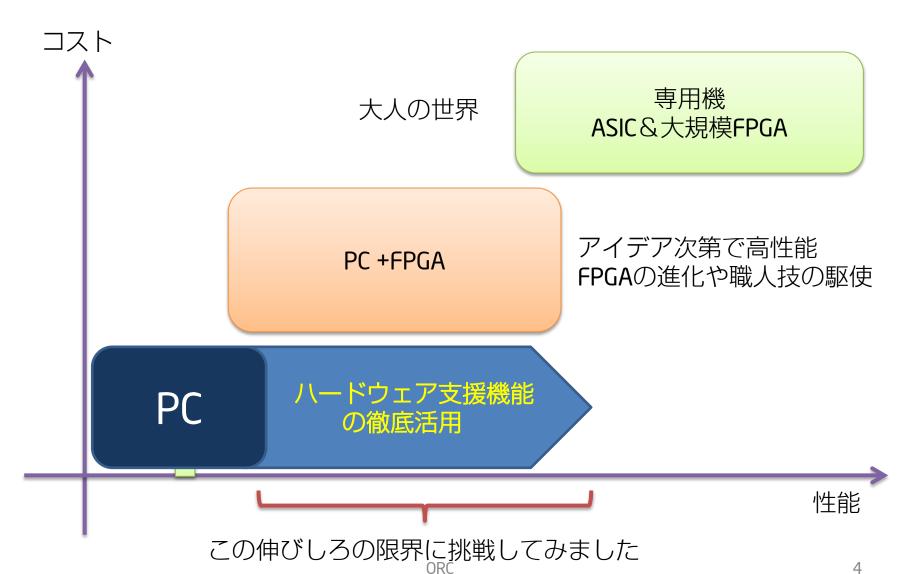


背景

- ・ 次期 天文台HPCシステム
 - 2013.4 岩手県奥州市・東京都三 鷹市に分散した分散HPCインフラ を構築
 - 演算性能:600Tflops~
 - SAN性能:40Gbpsクラス
 - IPネットワーク: **10Gbps**
- 演算・ストレージ・IPネット ワークを効率よく連携させる仕 組みが必要

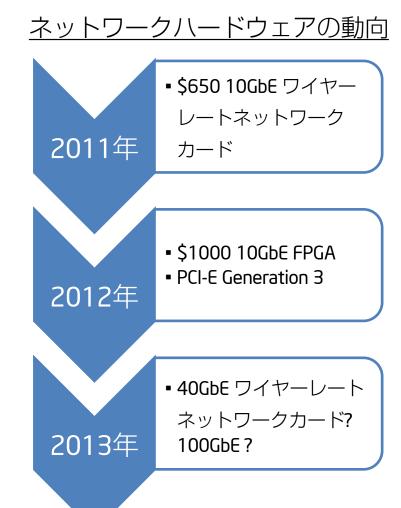


課題の解決



超高速ストレージキャッシュ・ストレージトラフィックの予測 に基づく伝送制御・高効率伝送方式を組み合わせて解決 ノードへ保存

→高性能なIPルータ+種々のアプリケーション実装 が必要



開発手法とトレードオフ

開発指針

- PC等の汎用品を利用した 安価な開発(COTS)
 - 高性能な汎用品の流通とライフサイクルコストや開発 コストの圧縮
- ・ 汎用品の進化にあわせた 性能強化や低価格化
- インハウスでの開発ノウ ハウ吸収と他への応用
 - 様々なシステムへ応用
- ノウハウの公開
 - 知の共有と技術者の育成

2つの試作高機能IPルータを出展

- 高機能IPルーター 「野川」
 - 実効L3 バックプレーン容量 75Gbps
 - 80Gbps (QSFP+ 40GBASE-R x 1) + 10GbE x 2
 - 超高速ストレージモジュール搭載
 - ・ 書き込み性能に特化したSSDを16台搭 載
 - トラフィックロギングモジュール
 - ストレージアクセラレータモジュール
- 高機能IPルーター 「大沢」
 - 18 x 10GBASE-R
 - 実効L3バッププレーン容量 100Gbps
 - サービス妨害攻撃モジュール搭載 (評価)

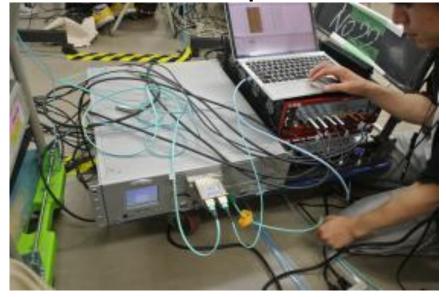
ULTRA40-アーキテクチャ

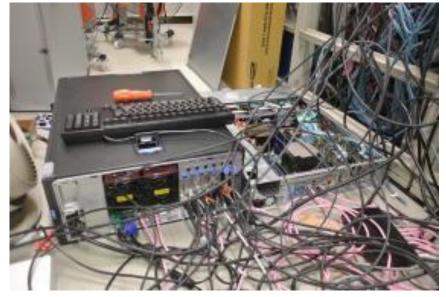
SANアクセラ レータ モジュール サービス妨害 攻撃 モジュール トラフィック Logging モジュール

アプリケーション サービス

2011年度版 ULTRA 40 IP高機能ルータ Intel 5520 Tylersburg + Linux or FreeBSDベース

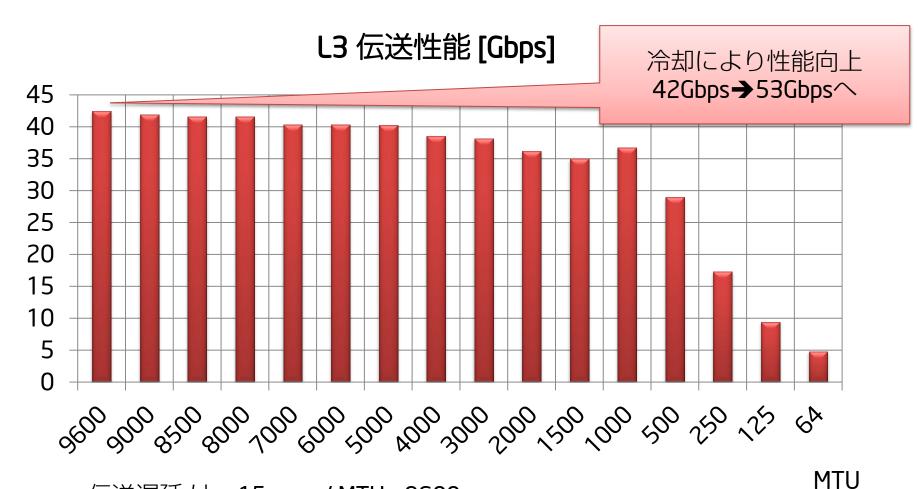
高性能NIC


4TB SSD ストレー ジモジュール


FPGA? GPGPU?

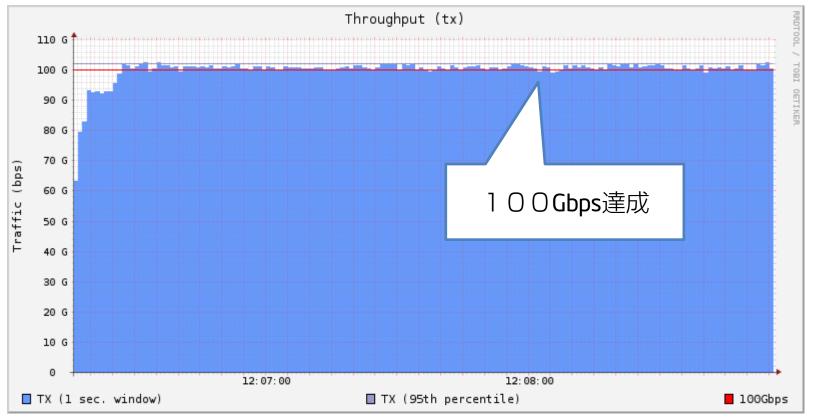
ハードウェア 各用途に合わせて カスタマイズ

性能計測


- IXIA とSpirent を接続し、160Gbps環境で 性能を検証
 - IXIA様, Spirent/TOYO様に感謝いたします.

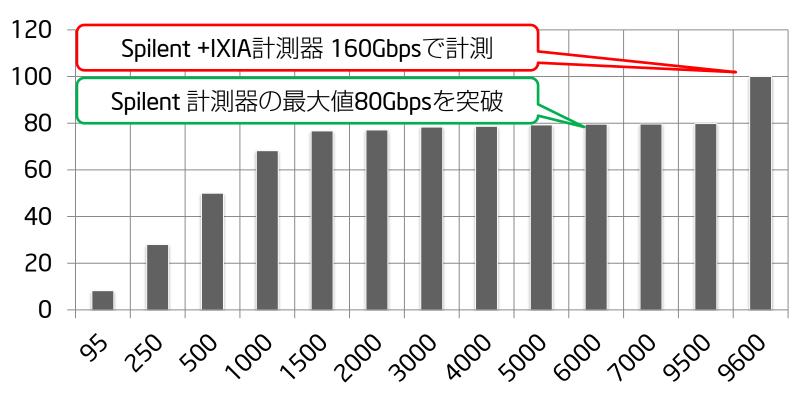
10GBASE-DA or SRにて、160Gbpsで接続

基本性能(大沢)



伝送遅延 は、15msec / MTU =9600

MIO


サービス妨害攻撃力(送信力)

- インターネットを破壊できるかもしれません。
 - IXIAとSpilentの組み合わせないと計測できない帯域でした.

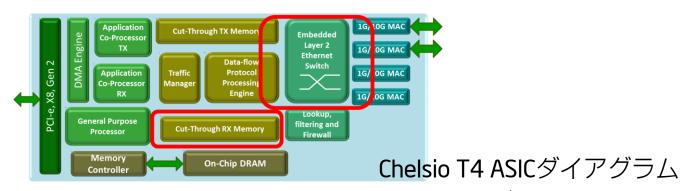
基本性能(大沢)

サービス妨害攻撃性能 (UDP flood)
攻撃力[Gbps]

ストレージモジュール性能

- Micron m4 SSD Firmware 0902 x 16で構成
 - Megaraid 9265 8i x 2
 - ストライピング/EXT4パラメータの最適値をSSD毎に 調査
- 32Gbps/最大4TBまでの連続書き込み性能
 - 32Gbpsのトラフィックフローなら, 16分間ダンプ

結論


- PCでも、100Gbpsは十分に扱えること
- ・100万円以下で十分つかえる環境
- Competition

どのように達成したか?

- 最適なパーツ選定・PCI-Eのソケット選定
 - 各種M/BやNIC, RAID, SSDの性能調査やメーカーへの Firmware改善と性能向上
- 割り込み処理の最適化
 - Receiver Side Scalingにより、各CPUへの割り込みを分散
 - 割り込みの集約化と待ち時間の調整
- Linuxカーネルでの割り込み・OS上の無駄な機能排
 - ACPI IRQバランスの禁止
 - CPU speed の制御禁止
 - rx/バッファの調整
 - MTUの調整
 - などなど

どのように達成したか?

- NIC搭載のハードウェアを活用
 - IP/UDP/TCP/Bondingオフロードエンジン
 - 組み込みL2フォワーディング機能
 - 2 ポート間のフォワーディングを内蔵の組み込みL2 SWを利用する
 - Userlandまでダイレクトに通過トラフィックを収集
 - CAMの関係上、100MACまで

http://fumi.org/ULTRAへどうぞ

今後の課題

- さらなる道の追求と情報公開
 - SandyBridgeやゲーマーM/Bの評価
- 冷却機構の強化
 - NIC上のASICの熱により性能が低下
- 高性能化
 - 来年は、100G x n本か?
 - 受信処理性能向上、メモリのボトルネック解消
- →2013.4の天文台HPCシステム運用に向けてのブラッシュアップ